In person re-identification (ReID) tasks, many works explore the learning of part features to improve the performance over global image features. Existing methods extract part features in an explicit manner, by either using a hand-designed image division or keypoints obtained with external visual systems. In this work, we propose to learn Discriminative implicit Parts (DiPs) which are decoupled from explicit body parts. Therefore, DiPs can learn to extract any discriminative features that can benefit in distinguishing identities, which is beyond predefined body parts (such as accessories). Moreover, we propose a novel implicit position to give a geometric interpretation for each DiP. The implicit position can also serve as a learning signal to encourage DiPs to be more position-equivariant with the identity in the image. Lastly, a set of attributes and auxiliary losses are introduced to further improve the learning of DiPs. Extensive experiments show that the proposed method achieves state-of-the-art performance on multiple person ReID benchmarks.
translated by 谷歌翻译
Recently, evolutionary multitasking (EMT) has been successfully used in the field of high-dimensional classification. However, the generation of multiple tasks in the existing EMT-based feature selection (FS) methods is relatively simple, using only the Relief-F method to collect related features with similar importance into one task, which cannot provide more diversified tasks for knowledge transfer. Thus, this paper devises a new EMT algorithm for FS in high-dimensional classification, which first adopts different filtering methods to produce multiple tasks and then modifies a competitive swarm optimizer to efficiently solve these related tasks via knowledge transfer. First, a diversified multiple task generation method is designed based on multiple filtering methods, which generates several relevant low-dimensional FS tasks by eliminating irrelevant features. In this way, useful knowledge for solving simple and relevant tasks can be transferred to simplify and speed up the solution of the original high-dimensional FS task. Then, a competitive swarm optimizer is modified to simultaneously solve these relevant FS tasks by transferring useful knowledge among them. Numerous empirical results demonstrate that the proposed EMT-based FS method can obtain a better feature subset than several state-of-the-art FS methods on eighteen high-dimensional datasets.
translated by 谷歌翻译
Purpose: The aim of this study was to demonstrate the utility of unsupervised domain adaptation (UDA) in automated knee osteoarthritis (OA) phenotype classification using a small dataset (n=50). Materials and Methods: For this retrospective study, we collected 3,166 three-dimensional (3D) double-echo steady-state magnetic resonance (MR) images from the Osteoarthritis Initiative dataset and 50 3D turbo/fast spin-echo MR images from our institute (in 2020 and 2021) as the source and target datasets, respectively. For each patient, the degree of knee OA was initially graded according to the MRI Osteoarthritis Knee Score (MOAKS) before being converted to binary OA phenotype labels. The proposed UDA pipeline included (a) pre-processing, which involved automatic segmentation and region-of-interest cropping; (b) source classifier training, which involved pre-training phenotype classifiers on the source dataset; (c) target encoder adaptation, which involved unsupervised adaption of the source encoder to the target encoder and (d) target classifier validation, which involved statistical analysis of the target classification performance evaluated by the area under the receiver operating characteristic curve (AUROC), sensitivity, specificity and accuracy. Additionally, a classifier was trained without UDA for comparison. Results: The target classifier trained with UDA achieved improved AUROC, sensitivity, specificity and accuracy for both knee OA phenotypes compared with the classifier trained without UDA. Conclusion: The proposed UDA approach improves the performance of automated knee OA phenotype classification for small target datasets by utilising a large, high-quality source dataset for training. The results successfully demonstrated the advantages of the UDA approach in classification on small datasets.
translated by 谷歌翻译
Multivariate time series forecasting (MTSF) is a fundamental problem in numerous real-world applications. Recently, Transformer has become the de facto solution for MTSF, especially for the long-term cases. However, except for the one forward operation, the basic configurations in existing MTSF Transformer architectures were barely carefully verified. In this study, we point out that the current tokenization strategy in MTSF Transformer architectures ignores the token uniformity inductive bias of Transformers. Therefore, the vanilla MTSF transformer struggles to capture details in time series and presents inferior performance. Based on this observation, we make a series of evolution on the basic architecture of the vanilla MTSF transformer. We vary the flawed tokenization strategy, along with the decoder structure and embeddings. Surprisingly, the evolved simple transformer architecture is highly effective, which successfully avoids the over-smoothing phenomena in the vanilla MTSF transformer, achieves a more detailed and accurate prediction, and even substantially outperforms the state-of-the-art Transformers that are well-designed for MTSF.
translated by 谷歌翻译
This technical report briefly describes our JDExplore d-team's Vega v2 submission on the SuperGLUE leaderboard. SuperGLUE is more challenging than the widely used general language understanding evaluation (GLUE) benchmark, containing eight difficult language understanding tasks, including question answering, natural language inference, word sense disambiguation, coreference resolution, and reasoning. [Method] Instead of arbitrarily increasing the size of a pretrained language model (PLM), our aim is to 1) fully extract knowledge from the input pretraining data given a certain parameter budget, e.g., 6B, and 2) effectively transfer this knowledge to downstream tasks. To achieve goal 1), we propose self-evolution learning for PLMs to wisely predict the informative tokens that should be masked, and supervise the masked language modeling (MLM) process with rectified smooth labels. For goal 2), we leverage the prompt transfer technique to improve the low-resource tasks by transferring the knowledge from the foundation model and related downstream tasks to the target task. [Results] According to our submission record (Oct. 2022), with our optimized pretraining and fine-tuning strategies, our 6B Vega method achieved new state-of-the-art performance on 4/8 tasks, sitting atop the SuperGLUE leaderboard on Oct. 8, 2022, with an average score of 91.3.
translated by 谷歌翻译
Video captioning aims to generate natural language sentences that describe the given video accurately. Existing methods obtain favorable generation by exploring richer visual representations in encode phase or improving the decoding ability. However, the long-tailed problem hinders these attempts at low-frequency tokens, which rarely occur but carry critical semantics, playing a vital role in the detailed generation. In this paper, we introduce a novel Refined Semantic enhancement method towards Frequency Diffusion (RSFD), a captioning model that constantly perceives the linguistic representation of the infrequent tokens. Concretely, a Frequency-Aware Diffusion (FAD) module is proposed to comprehend the semantics of low-frequency tokens to break through generation limitations. In this way, the caption is refined by promoting the absorption of tokens with insufficient occurrence. Based on FAD, we design a Divergent Semantic Supervisor (DSS) module to compensate for the information loss of high-frequency tokens brought by the diffusion process, where the semantics of low-frequency tokens is further emphasized to alleviate the long-tailed problem. Extensive experiments indicate that RSFD outperforms the state-of-the-art methods on two benchmark datasets, i.e., MSR-VTT and MSVD, demonstrate that the enhancement of low-frequency tokens semantics can obtain a competitive generation effect. Code is available at https://github.com/lzp870/RSFD.
translated by 谷歌翻译
With the advanced request to employ a team of robots to perform a task collaboratively, the research community has become increasingly interested in collaborative simultaneous localization and mapping. Unfortunately, existing datasets are limited in the scale and variation of the collaborative trajectories, even though generalization between inter-trajectories among different agents is crucial to the overall viability of collaborative tasks. To help align the research community's contributions with realistic multiagent ordinated SLAM problems, we propose S3E, a large-scale multimodal dataset captured by a fleet of unmanned ground vehicles along four designed collaborative trajectory paradigms. S3E consists of 7 outdoor and 5 indoor sequences that each exceed 200 seconds, consisting of well temporal synchronized and spatial calibrated high-frequency IMU, high-quality stereo camera, and 360 degree LiDAR data. Crucially, our effort exceeds previous attempts regarding dataset size, scene variability, and complexity. It has 4x as much average recording time as the pioneering EuRoC dataset. We also provide careful dataset analysis as well as baselines for collaborative SLAM and single counterparts. Data and more up-to-date details are found at https://github.com/PengYu-Team/S3E.
translated by 谷歌翻译
多代理协作感知可以通过使代理商能够通过交流相互共享互补信息来显着升级感知表现。它不可避免地会导致感知表现与沟通带宽之间的基本权衡。为了解决这个瓶颈问题,我们提出了一个空间置信度图,该图反映了感知信息的空间异质性。它使代理只能在空间上共享稀疏而感知的关键信息,从而有助于沟通。基于这张新型的空间置信度图,我们提出了2Comm,即沟通有效的协作感知框架。其中2Comm具有两个不同的优势:i)它考虑了实用的压缩,并使用较少的沟通来通过专注于感知至关重要的领域来实现更高的感知表现; ii)它可以通过动态调整涉及通信的空间区域来处理不同的通信带宽。要评估2comm的位置,我们考虑了在现实世界和模拟方案中使用两种模式(相机/激光镜头)和两种代理类型(CAR/无人机)的3D对象检测:OPV2V,v2x-sim,dair-v2x和我们的原始的Coperception-uavs。其中2comm始终优于先前的方法;例如,它实现了超过$ 100,000 \ times $较低的通信量,并且在OPV2V上仍然优于脱颖而出和v2x-vit。我们的代码可在https://github.com/mediabrain-sjtu/where2comm上找到。
translated by 谷歌翻译
深度神经网络(DNN)已在脑病变检测和分割中广泛采用。但是,在2D MRI切片中定位小病变是具有挑战性的,需要在3D上下文聚集的粒度和计算复杂性之间取得平衡。在本文中,我们提出了一种新型的视角变压器,以增强MRI特征的提取,以进行更准确的肿瘤检测。首先,所提出的变压器在3D脑扫描中收获了不同位置之间的远程相关性。其次,变压器将一堆切片功能堆叠为多个2D视图,并增强这些特征的视图,该功能大致以有效的方式实现了3D相关计算。第三,我们将提出的变压器模块部署在变压器主链中,该模块可以有效地检测到脑损伤周围的2D区域。实验结果表明,我们提出的观看式变压器在具有挑战性的大脑MRI数据集上对大脑病变检测表现良好。
translated by 谷歌翻译
给定数千种同样准确的机器学习(ML)模型,用户如何在其中选择?最近的ML技术使领域专家和数据科学家能够为稀疏决策树生成完整的Rashomon设置,这是一套几乎最理想的可解释的ML模型。为了帮助ML从业者识别具有此Rashomon集合中理想属性的模型,我们开发了Timbertrek,这是第一个交互式可视化系统,该系统总结了数千个稀疏决策树的规模。两种用法方案突出了Timbertrek如何使用户能够轻松探索,比较和策划与域知识和价值观保持一致的模型。我们的开源工具直接在用户的计算笔记本和Web浏览器中运行,从而降低了创建更负责任的ML模型的障碍。Timbertrek可在以下公共演示链接中获得:https://poloclub.github.io/timbertrek。
translated by 谷歌翻译